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Biotechnological Uses of Spider Silk
by Omar Bashgawi

(Biology 1130)

are ideal for the pursuit of biomaterials. It is biocompatible, biodegradable, has high tensile

strength, and great elasticity. Since natural spider silk is difficult to obtain in large quantities,
recombinant spider silk protein is used for testing and experimentation. Biotechnological applications
being experimented with currently include: coatings, films, hydrogels, particles, non-woven meshes,
drug carriers, and medical sutures. Future uses of perfected recombinant spider silk proteins could
also include biomaterials such as superbly tough clothing, armor, and construction materials.

According to Eisoldt et al. (2011), there are seven different types of spider silk that can be

created, depending on species and environment: Major Ampullate Silk, Flagelliform Silk, Aggregate
Silk, Minor Ampullate Silk, Pyriform Silk, Aciniform Silk, and Cylindriform Silk (Figure 1). These
different forms of silk expressed by spiders play different roles based on function, environment, and
spider. All spider silk proteins are composed of one or more proteins called Spidroins, which share a
primary structure pattern comprised of a large central core of repeated modular units. Approximately
90% of the amino acids are used to compose these modular units (Eisholdt, Scheibel & Smith, 2011).

S pider silk is an amazing biological construct that has incredible mechanical properties which

Between the different silk types their strength (the stress needed to break the fiber)
ranges from 0.02 to a remarkable 1.7 GPa, which exceeds steel (1.5 GPa), while the
extensibility varies between 10 and 500%. Interestingly, most spider silks have a
sophisticated combination of strength and extensibility, which yields a very high
toughness (the amount of energy absorbed per volume before breakage) that exceeds
most natural or man-made fibers. Also common for all silks is their viscoelastic
behavior, since upon stretching energy is dissipated in the form of heat, diminishing
any elastic recoil (Eisholdt et al., 2011).
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Due to the difficulty in obtaining natural spider silk, from issues such as time consuming
collection of webs and difficult farming techniques, another method of gathering silk is needed.
Recombinant Spider Silk Protein (RSSP) is the answer to produce nearly identical, natural spider silk
protein. For example, Eisholdt et al. describe that the expression of these silk proteins through
recombinant processes (mainly through Escherichia Coli) allow for the creation of protein structures
that are not natural. Examples include: spheres, capsules, films, non-wovens or hydrogels (Figure 2).
These non-natural structures have great potential for various applications (Eisholdt et al., 2011).

There are many methods in use to produce these recombinant proteins, each with varying
physiological traits and homogenous properties. Tokareva et al. (2013) details that RSSP has been
created through a variety of methods including: bacteria (Escherichia Coli), yeast (Pichia pastoris),

http://dc.cod.edu/essai/vol13/iss1/9



Bashqawi: Biotechnological Uses of Spider Silk

Spheres

drug delivery,
cosmetics

Films

Hydrogels

cell scaffolds,
wound healing

coatings,
wound dressings

Non-
wovens

filters, drug delivery.
wound dressings, cosmetics
textiles

Fig. 2

(Eisholdt et al., 2011)

plants (soybean, tobacco, Aribidopsis), insects (silkworm larvae), mammalian cell lines
(BHT/Hampster), and transgenic animals (mice, goats). The process to create the recombinant
proteins followed four steps: first, design and assemble synthetic silk-like genes into genetic
‘cassettes’; second, insertion of the segment into a DNA vector; third, transformation of the
recombinant DNA molecule into a host cell; fourth, expression and purification of the clones (Figure
3) (Kaplan, Michalczechen-Lacerda, Rech & Tokareva, 2013).

The different RSSP proteins created through different production methods varied in
molecular composition, form, length, tensile strength, and possible applications. A difficulty
represented throughout most of the referenced material in this paper was the fact that RSSP created
through bacterial methods yielded the greatest amount of protein but the lowest availability of
stranded proteins. Use of Escherichia Coli to create RSSP is the quickest easiest method to create a
sizable supply of RSSP. However, this bacterium suffers from the ability to create long strands of
protein. The use of yeast and mammalian cell lines produced longer, more complex protein strands of
RSSP but at lower quantities (Tokareva et al., 2013).
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According to Kuwana et al. (2014), use of transgenic silkworms to produce spider silk
proteins yielded greater quantities of RSSP in nearly identical composition to that of natural spider
silk. They incorporated spider silk protein genetic information into p-HC enhanced green fluorescent
protein (EGFP) plasmids, along with other test samples (Figure 4). After propagation of the
transformed silkworms, results showed evidence that the transgenic spider silk protein was nearly
equal in tensile strength and application. They were able to weave fabric composed of the
recombinant silk with greater strength and toughness than that of standard silkworm silk.
Implications show that it is possible to obtain nearly identical spider silk protein more efficiently and
in greater quantities. These results also surpass RSSP creations through production in Escherichia
Coli in terms of long strand creation (Kojima, Kuwana, Nakajima, Sezutsu & Tamada, 2014).
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These results indicate that it is possible to produce higher quality RSSP from transgenic
animals with near natural physiological properties. This is encouraging as it is another avenue of
experimentation towards practical applications and possible large scale production.

Creation and possible applications of RSSP were also noted by Schacht & Scheibel (2014).
According to their article, Prokaryotic and Eukaryotic methods have been pursued to create a variety
of morphologies such as films, hydrogels, particles, or non-woven meshes (Figure 5). Genetic
modification allows for the incorporation of individual amino acid residues with chemically specific
side-chains. The result is a broad range of applications through the covalent coupling of peptides,
enzymes, or particles. Functionalizing RSSP with antimicrobial peptides is a step towards
suppressing infections while promoting cell growth. Cell penetrating peptides can also be used for
gene therapy. Coatings can be created with RSSP that boosts biocompatibility in materials such as
medical grade silicone implants. Research shows that such coatings reduce inflammation and
rejection. RSSP can also be encapsulated for drugs, proteins, genes, and cells for delivery or
diagnostics (Figure 6). This makes them excellent drug carriers. They also show promise as gene
carriers for tumor cell-specific delivery. In addition, use of mesh constructions showed improved
ability of structures to regenerate and heal. For example, RSSP scaffolds were used to test cell repair
(Schacht & Scheibel, 2014).
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Applications of spider silk are not limited to RSSP alone. Hennecke et al. (2013) used natural
spider silk woven together to form medical sutures for possible use in tendon repair (Figure 7).
Braiding and use of various silks from a variety of spiders to minimize variations in tensile strength
and strand diameters was involved during experimentation. Results showed increased tensile strength
and positive reactions to NaCl for minimized retraction and physiological use. Cyclic tests of the
braided spider silk strands far surpassed that of existing medical sutures and do not suffer the effects
of rejection and infection (Hennecke et al., 2013).

11

Published by DigitalCommons@COD, 2016



ESSAIL Vol. 13 [2016], Art. 9

200 jam

Fig. 7
(Hennecke et al., 2013)

Future possibilities of this research may lead to vastly improved clothing and textiles.
Examples include materials that are stronger than steel and Kevlar but are supple, stretchable, and
biodegradable. The secrets behind spider silk proteins can even lead to construction materials that
replace existing ones with superior strength and protection. For instance, cabling and tubing made of
RSSP coatings would be stronger than steel but be able to stretch and flex. Also, bridges supported
by RSSP composed materials built into the support cables would be extremely versatile.

Advantages of this research into spider silk proteins include medical and commercial
applications through RSSP with spider silk protein as a template. Targeted drug delivery, tissue
repair, enhanced cosmetics, and improved clothing are all possibilities brought about by this
research. In addition, use of natural spider silk or spider silk from transgenic animals can enable the
production of a wide variety of materials that are stronger, biodegradable, and biocompatible. Some
disadvantages of this research include: inhomogeneity in some RSSP’s; difficulty in obtaining
natural spider silk; differences in reactions of RSSP and spider silk due to temperature, environment,
and silk type; differences in the protein structure of the spider silk among the many species of
spiders; and the long term studies required to bring these technologies to market.

The ethical concerns surrounding the research and marketing of biotech products derived
from RSSP and natural spider silk revolve around the testing done on animals during
experimentation. We must ask ourselves if this is ethical. While much experimentation is still
conducted on animals such as mice and rats for a variety of experiments, it is not something that
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every individual feels is ethical. The research into spider silk proteins will definitely require
experimentation on animals. However, | personally have no objection to this method. With that in
mind, | still must consider the ethical concerns presented by others who may not share my view.

In conclusion, spider silk is an incredible material whose mechanical properties are ideal for
the pursuit of biomaterials. It is biocompatible, biodegradable, has high tensile strength, and great
elasticity. Biotechnological applications being experimented with currently can lead to targeted drug
delivery, tissue repair, enhanced cosmetics, and improved clothing. Many future applications are also
possible such as biomaterials like tough clothing, armor, and construction materials.
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